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Abstract. The eikonal Born series (EBS) method is applied to the elastic scattering of electrons by He, Ne
and Ar atoms at 35 keV. The differential cross-sections are compared with the numerical results obtained
by the partial-wave analysis. A simple analytical Dirac-Hartree-Fock-Slater (DHFS) field is used for these
atoms. The results are also obtained by Wallace, Das and modified Das method. An oscillatory nature
and a strong forward peak in the cross-section are not found at 35 keV. The results are nearer to the
experimental data of Coffmann and M. Fink as well as numerical results based on relativistic partial-wave
treatment.

PACS. 34.80.Bm Elastic scattering of electrons by atoms and molecules

1 Introduction

Elastic electron-atom scattering at intermediate and high
energies is studied by combining the Born series and
eikonal series. The results should be consistent through
order k−2i [1,2]. The eikonal approximation gives good re-
sults for small scattering angle [3], when the magnitude of
incident wave vector ki is large.

Various corrections to the eikonal approximation are
used for very small-angle elastic scattering of electrons
from He, Ne and Ar atoms. A simple computational
scheme which is no more difficult than a second Born com-
putation was described by Das [4]. Further modification in
the Das technique was applied successfully by K. Lata [5].
A third-order eikonal term in the place of the third Born
term is used to get a consistent result. Thus the Das ap-
proach is improved without any additional complexities of
the calculations. The computational results are compared
with the new experimental data [6]. The exact results are
obtained by solving Dirac equation numerically with the
code PWADIR [7].

2 Theory

Consider the non-relativistic scattering of a particle of
mass m by a real, spherically symmetric potential V (r)
of range a. The Glauber eikonal scattering amplitude is

fE =
k

i

∫ ∞
0

dbbJ0(∆b)(e
iX0(b)/k − 1) . (1)
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The real and the imaginary parts of fE are

RefE = k

∫ ∞
0

dbbJ0(∆b) sin(X0) , (2)

ImfE = k

∫ ∞
0

dbbJ0(∆b)[cos(X0)− 1] , (3)

where

X0(b) = −
1

2

∫ ∞
0

U(b, z)dz , (4)

and ∆ = 2k sin θ/2 the magnitude of the momentum
transfer. The wave number of the incident particle |ki| =
k. The value of U(r) = 2mV (r)/~2. This is the reduced
potential. In the case of superposition of Yukawa-type po-
tential

U(r) = −U0
∑
i

γi
e−λir

r
. (5)

It was shown that by adding the quantity Ref̄B2, the
real part of the second Born amplitude to fE, a marked
improvement over the eikonal amplitude was obtained [1].
Thus

fEBS = fE +Ref̄B2 . (6)

Especially in the weak-coupling situation the eikonal Born
series amplitude gives a consistent picture of the scattering
amplitude through order k−2i . In the case of potential U(r)
we have

X0(b) = −U0
∑
i

γiK0(λib) , (7)
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where K0 is the modified Bessel function of order zero.
In this case the real part of the second Born amplitude is
evaluated using Dalitz integrals [8],

Ref̄B2 =
∑
i,j

U20
2
γiγj

∫ 1

0

F (λi, λj , t)dt , (8)

where

F (λi, λj , t) =
λ2i t+ λ

2
j(1− t)

Γ [{λ2i t+ λ
2
j (1− t)}

2 + 4k2Γ 2]
(9)

and

Γ = λ2i t+ λ
2
j (1− t) + t(1− t)∆

2 . (10)

Thus the differential cross-section is obtained as

|fEBS|
2 = |RefE +Ref̄B2|

2 + |ImfE|
2 . (11)

We have taken care of zeros of the Bessel function. With
the help of Euler’s transform [9] the integrals in the equa-
tion of RefE, ImfE are evaluated. Another way of improv-
ing eikonal amplitude in potential scattering has been pro-
posed by Wallace [10]. The Wallace-eikonal correction was
given as [11]

fw =
k

i

∫ ∞
0

dbbJ0(∆b)

×

{
exp

[
i

(
X0

k
(b) +

X1

k3
(b)

)]
− 1

}
, (12)

where

X1(b) =
∑
i,j

U20
2
γiγjλjK0((λi + λj)b) (13)

and X0(b) is the eikonal phase given by equation (7). We
rewrite equation (6) as

fEBS = fw +Ref̄B2 . (14)

A simpler method was suggested by Das [4] in which
the second Born term is multiplied by a variationally de-
termined complex number to compensate for the missing
higher-order Born terms. The scattering amplitude ob-
tained by Das as

fD = fB1 + (aD + ibD)(f̄B2R + īfB2I) , (15)

where f̄B2R and f̄B2I are denoted as real and imaginary
parts of f̄B2. The parameters aD, bD are energy dependent.
The Das technique was improved further by including the
third Born term, the derivation of scattering amplitude [5],

fMD = fB1 + (aP + ibP)(f̄B2 + f̄B3) . (16)

According to the analysis of Byron and Joachain [12] at
large energies aP is independent of energy and converge to
unity, whereas bP varies with energy as k−3i . So the terms
f̄B3I and bP which fall faster than k−2i asymptotically are

neglected. Here we replace the f̄B3R by the equivalent term
f̄E3 [13]. Thus fMD corrected up to the order k−2i is given
by

fMD = fB1 + aP(f̄B2R + f̄E3) + iaPf̄B2I , (17)

where

aP =
fB1

fB1 − f̄E3
. (18)

Fortran 77 code PWADIR [7] gives reliable cross-
section data for elastic scattering of electrons by free
atoms for K.E. ≥ 1 keV by using the static field approxi-
mation with relativistic partial-wave analysis. This code is
used to evaluate the exact results. The generalized atomic
units are used throughout this paper. We consider a sim-
ple analytical approximation φ(r) for the atomic screening
function [14] accounting for relativistic effects distorting
the atomic electron cloud and the nuclear screened po-
tential. This is reliable for the large atomic number. The
parameters are determined analytically from the results
of DHFS self-consistent calculations.

The Dirac radial wave equation is used in the com-
putation of the differential scattering amplitudes for inci-
dent electrons of 35 keV. The radial equations are solved
using the Buhring power series method [15]. The Dirac
phase shifts are determined by solving the Dirac radial
wave equation with a central field

V (r) = −
Z

r
φ(r) + VEX(r) . (19)

The exchange effect is included by the local exchange po-
tential of McCarthy VEX(r) [16]. The charge cloud polar-
ization is neglected. There is at present no experimental
evidence that the charge cloud polarization plays a no-
ticeable role at the incident electron energy considered
here [17]. For high-energy particles large number of terms
are required in the partial-wave series. Here the phase
shifts of order l less than a finite value NDELTA=1000
is computed. The value of NDELTA is large enough to
enable convergence of the partial-wave series. The accu-
racy of the computed phase shift is controlled through the
input parameter ε = 1× 10−8.

3 Result and discussion

A systematic study of the differential cross-sections for the
inert gas atoms He, Ne, and Ar is reported here for the
non-relativistic potential scattering. The differential cross-
sections for elastic scattering of electrons from these tar-
get atoms are studied for energies in the range of 15 keV
to 35 keV. We did not find any strong peak in the for-
ward direction or an oscillatory nature in differential cross-
sections as reported by Geiger et al. [18]. Our results are
close to the new experimental data [6]. The results are ex-
hibited graphically in Figures 1-3. We see that, according
to the EBS method, the differential cross-sections for He,
Ne, Ar atoms at very small scattering angle differ from
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Fig. 1. Differential cross-sections for the elastic scattering of
35 keV electrons by the helium atoms. —-: present EBS results
(see Eq. (11)); + + +: experimental data of Coffmann et al.
(Ref. [6]); — —: numerical data (Ref. [7]);– – – : Das method
(see Eq. (15)).
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Fig. 2. Electron-neon elastic differential cross-sections at
35 keV. Different symbols have the same meaning as in fig. 1.
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Fig. 3. Electron-argon elastic differential cross-sections at
35 keV. Different symbols have the same meaning as in fig. 1.

Table 1. E = 35 keV. Differential cross-sections in atomic
units.

He-atom Ar-atom
θ (deg.) W MD W MD

0.20 0.753 0.669 65.607 62.262
0.30 0.688 0.659 63.004 60.283
0.40 0.662 0.647 60.196 58.249
0.50 0.641 0.631 57.350 55.996
0.60 0.619 0.612 54.504 53.505
0.70 0.597 0.592 51.593 50.805

W: DCS using the Wallace method (see Eq. (14)).
MD: DCS using the Modified Das method (see
Eq. (17)).

Table 2. E = 35 keV. Differential cross-sections in atomic
units.

Ne-atom
θ (deg.) W MD

0.20 10.257 8.763
0.40 8.754 8.420
0.60 8.189 8.026
0.80 7.640 7.535
1.00 7.046 6.968
1.20 6.420 6.357
1.40 5.786 5.734
1.60 5.166 5.121
1.80 4.578 4.539
2.00 4.032 3.998

W: DCS using the Wallace
method (see Eq. (14)).
MD: DCS using the Modified
Das method (see Eq. (17)).

exact results (numerical) in the range 0.2 to 0.3 Å−1. The
EBS amplitude reproduce the exact results for momentum
transfer greater than 0.3 Å−1. For He-atom (Fig. 1), dif-
ferential cross-section obtained by the numerical and Das
methods have similar nature but they are on either side
of the experimental data which cover all points. The EBS
results are close to the experimental data compared to the
numerical and Das results beyond 0.3 Å−1. In the case of
Ne-atom (Fig. 2), differential cross-sections resulting from
EBS and Das methods are in excellent agreement with
the partial-wave calculations. These results differ from the
experimental results. In the case of Ar-atom (Fig. 3), the
results obtained by the numerical method are closer to the
experimental results.

We have also reported differential cross-sections by
Wallace and modified Das method at 35 keV. These re-
sults give nearly the same values as those given by EBS
and Das methods, respectively. The strong forward peak
and oscillating features in differential cross-sections are
lacking. The results are shown in Tables 1 and 2 . The dif-
ferential cross-sections calculated by Wallace method are
in close agreement with the EBS results and modified Das
results.
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